action constants obtained in this paper are compared with those obtained earlier.

Reaction constants for the dissociation of series of acids have been found to increase with the alcohol concentration in mixed water-alcohol solvents. ${ }^{\text {b }}$ The reaction constants reported in Table III are in agreement with this finding. The apparent exception, reported earlier, ${ }^{5 b}$ involving the reaction
constants for the second $p K^{\prime}$ s of benzenephosphonic acids was based on an erroneous ρ-value in 50% ethanol; the corrected value is given in Table III.

Acknowledgment.-The authors wish to thank Mrs. Barbara Stanley for performing the analyses necessary for this research.
Chapel Hill, North Carolina
[Contribution from the Cryogenic Laboratory and the Department of Chemistry, The Ohio State University]

Pressure-Volume-Temperature Relationships of Liquid Normal Deuterium ${ }^{1}$

By Abraham S. Friedman, Max Trzeciak and Herrick L. Johnston
Received November 23, 1953

Compressibility factors of liquid normal deuterium have been determined at pressures up to 100 atm . and at temperatures between the triple and critical points of D_{2}. Isochores, derived from the experimental isotherms, are linear and their slopes are a linear function of the density throughout the range investigated. ($\partial P / \partial T$) $\mathrm{v}=-14.1+(665 / V)$, where the pressure is in atmospheres, the temperature is in degrees absolute, and volume is in cc. per mole.

Introduction

The compressibility of liquid deuterium at 19.71, 20.31 and $20.97^{\circ} \mathrm{K}$. has been determined by Bartholome ${ }^{2}$ at pressures up to 100 atm . However, the $P-V-T$ properties of liquid deuterium in the temperature region between the boiling point of hydrogen and the critical point of deuterium have not previously been investigated. As part of this

Fig. 1. $-P$ vs. V for liquid D_{2}.
(1) This work was done under the anspices of the Atomic Energy Commission.
(2) E. Bartholomé. Z. physik. Chom.. [B] 33, 387 (1936).

Laboratory's program of study of the thermal and physical properties of the isotopes of hydrogen, the data of state for liquid normal deuterium have been determined in this temperature range at pressures up to 100 atm .

Apparatus

The apparatus used in this research was the san1e as that employed in the earlier investigation on the compressibility of liquid hydrogen. ${ }^{3}$ It consists of a high pressure copper

Fig. 2.--Isochores replotted from Fig. 1.

[^0] 76,1482 (1954).
pipet of known volume surrounded by a bath of liquid or gaseous hydrogen under pressure. The temperature of the condensed deuterium is controlled by regulating the pressure on the hydrogen in the surrounding refrigerant container. The refrigerant container is surrounded by a copper vacuum vessel into which exchange gas can be introduced

Table I
Data of State for Compressed Liquid Deuterium

when required. The entire apparatus is suspended in a glass dewar (containing liquid nitrogen) which is enclosed in a brass cryostat having lucite windows.

The temperature is determined with a standard copperconstantan thermocouple. The pressure of the vapor over the liquid deuterium is measured with an oscillating-piston type dead-weight gage, and the number of moles is obtained by expanding the deuterium into a series of low pressure tanks thermostated at 25°.

Experimental

The experimental procedure is the same as that described for hydrogen. ${ }^{3}$ The deuterium was prepared by the Stewart Oxygen Co. Mass spectrometer analyses, carried out in this Laboratory, yielded the composition 99.8 atomic $\% \mathrm{D}$, 0.2 atomic $\% \mathrm{H}$. The deuterium was further freed from traces of condensable impurities by passing it, at high pressures, through a copper coil submerged in liquid nitrogen. Conversion of the deuterium to the ortho modification was negligible since the duration of the runs was always less than about eight hours and the system was free from any known para-ortho conversion catalyst.

Results

Eight sets of runs were made at temperatures from 20.32 to $38.06^{\circ} \mathrm{K}$. These included two sets of runs, each, at the lowest and highest temperatures to verify the consistency of the experimental procedure. The data are shown in Table I.

In Fig. 1, the pressure in atmospheres is plotted against the molar volume in cc ./mole for the six isotherms. The curves terminate at the saturated vapor pressure curve. ${ }^{4}$ Bartholome's data at the boiling point of hydrogen are plotted as squares in the graph. A plot of pressure vs. temperature at constant volume is shown in Fig. 2. The isochores are linear in this region and hence can be expressed by equations of the form

$$
\begin{equation*}
P=A_{(\mathbf{v})}+B_{(\mathbf{v})} T \tag{1}
\end{equation*}
$$

It is also of interest to note that, just as in the case for hydrogen, ${ }^{2}$ the slopes of the isochores $B_{(\mathrm{V})}$ vary linearly with the density. The slopes of the isochores of Fig. 2 can be expressed by the equation

$$
\begin{equation*}
B_{(V)}=\left(\frac{\partial P}{\partial \bar{T}}\right)_{V}=-14.1+\frac{66.5}{V} \tag{2}
\end{equation*}
$$

where the pressure is in atmospheres, the tennperature is in degrees absolute, and the volume in cc. mole.

Table II compares the slopes of the isochores of Fig. 2 with those tabulated by equation 2 above.

TABLE II					
V. cc./ mole	B(v), Fig.2	B(v), Eq. 2.	V.cc./ mole	$B(\mathrm{v})$. Fig. 2	$B(\mathrm{v})$. Eq.2.
23	14.7	14.8	29	8.7	8.8
24	13.8	13.6	30	7.8	8.0
25	12.5	12.5	31	7.4	7.4
26	11.5	11.4	32	6.6	6.7
27	10.3	10.5	33	6.2	6.0
28	9.5	9.6			

Acknowledgment.-We are grateful for the assistance given by Mr. S. Ruven Smith, of this Laboratory, who analyzed the deuterium on the mass spectrograph.

Columbus, Ohio
(4) A. S. Friedman, D. White and H. L. Johnston, This Journal. 73, 1310 (1951).

[^0]: (3) H. L. Johnston, W. E. Keller and A. S. Friedman, This Journal

